Optimal Fuzzy Clustering in Overlapping Clusters
نویسندگان
چکیده
The fuzzy c-means clustering algorithm has been widely used to obtain the fuzzy k-partitions. This algorithm requires that the user gives the number of clusters k. To find automatically the “right” number of clusters, k, for a given data set, many validity indexes algorithms have been proposed in the literature. Most of these indexes do not work well for clusters with different overlapping degree. They usually have a tendency to fails in selecting the correct optimal clusters number when dealing with some data sets containing overlapping clusters. To overcome this limitation, we propose in this paper, a new and efficient clusters validity measure for determination of the optimal number of clusters which can deal successfully with or without situation of overlapping. This measure is based on maximum entropy principle. Our approach does not require any parameter adjustment, it is then completely automatic. Many simulated and real examples are presented, showing the superiority of our measure to the existing ones.
منابع مشابه
Generating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms
UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...
متن کاملMCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm
Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membersh...
متن کاملWeb Document Clustering Using Fuzzy Equivalence Relations
Conventional clustering means classifying the given data objects as exclusive subsets (clusters).That means we can discriminate clearly whether an object belongs to a cluster or not. However such a partition is insufficient to represent many real situations. Therefore a fuzzy clustering method is offered to construct clusters with uncertain boundaries and allows that one object belongs to overl...
متن کاملON FUZZY NEIGHBORHOOD BASED CLUSTERING ALGORITHM WITH LOW COMPLEXITY
The main purpose of this paper is to achieve improvement in thespeed of Fuzzy Joint Points (FJP) algorithm. Since FJP approach is a basisfor fuzzy neighborhood based clustering algorithms such as Noise-Robust FJP(NRFJP) and Fuzzy Neighborhood DBSCAN (FN-DBSCAN), improving FJPalgorithm would an important achievement in terms of these FJP-based meth-ods. Although FJP has many advantages such as r...
متن کاملFCM-type Cluster Validation in Fuzzy Co-Clustering and Collaborative Filtering Applicability
FCM-type cluster validation is a technique for searching for the optimal fuzzy partition, in which the number of clusters is evaluated by considering the degree of overlapping of fuzzy memberships, cluster compactness or cluster separation. In this paper, a new approach for FCM-type cluster validation in fuzzy co-clustering is proposed. Because fuzzy co-clustering does not use cluster prototype...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 5 شماره
صفحات -
تاریخ انتشار 2008